Wednesday, January 20, 2016

Motion and WHY Project III

Your element number is!
 
WHY Project III
 Due February 29th
Periodically You Can Have Fun!

 Our WHY Project III is based on students investigating an element from the periodic table. Specific details for the essay and the artistic rendition are in your child's folder and were discussed during class today.
Learning Goals:
Students will become familiar with one chemical element randomly selected by them.  They will use research skills to learn about the element, describe its principle features and reactions, and its most common uses. Their final project will include a 5 paragraph essay with a length of no less than 200 words and a maximum of no more than 560 words, as well as an artistic rendition of the uses of the element. 

Mechanics and Motion

Physics studies many types of motion and forcesMotion is one of the key topics in physics. Everything in the universe moves. It might only be a small amount of movement and very very slow, but movement does happen. Don't forget that even if you appear to be standing still, the Earth is moving around the Sun, and the Sun is moving around our galaxy. The movement never stops. Motion is one part of what physicists callmechanics. Over the years, scientists have discovered several rules or laws that explain motion and the causes of changes in motion. There are also special laws when you reach the speed of light or when physicists look at very small things like atoms.

Speed it Up, Slow it Down

The physics of motion is all about forces. Forces need to act upon an object to get it moving, or to change its motion. Changes in motion won't just happen on their own. So how is all of this motion measured? Physicists use some basic terms when they look at motion. How fast an object moves, its speed or Velocity, can be influenced by forces. (Note: Even though the terms 'speed' and 'velocity' are often used at the same time, they actually have different meanings.)

This solid gold car has a mass, a velocity, and a rate of accelerationAcceleration is a twist on the idea of velocity. Acceleration is a measure of how much the velocity of an object changes in a certain time (usually in one second). Velocities could either increase or decrease over time.Mass is another big idea in motion. Mass is the amount of something there is, and is measured in grams (or kilograms). A car has a greater mass than a baseball.

Simple and Complex Movement

There are two main ideas when you study mechanics. The first idea is that there aresimple movements, such as if you're moving in a straight line, or if two objects are moving towards each other in a straight line. The simplest movement would be objects moving at constant velocity. Slightly more complicated studies would look at objects that speed up or slow down, where forces have to be acting.

There are also more complex movements when an object's direction is changing. These would involve curved movements such as circular motion, or the motion of a ball being thrown through the air. For such complex motions to occur, forces must also be acting, but at angles to the movement.

In order to really understand motion, you have to think about forces, acceleration, energy, work, and mass. These are all a part of mechanics.

Friday, January 15, 2016

Remembering Dr. Martin Luther King, Jr. and Family Fun Night 1/21

Remembering Dr. Martin Luther King, Jr.




Martin Luther King was just a man
for justice and peace he would stand

All he wished
Is for whites and blacks
to be equal when we finished

He had a non-violent protest
To put the people to a special test

So, to racial injustice, to inequality,
He raised a fist of peace
and with equal rights,
America would find release.

He knew his people were very bright,
he just had to lead them to the light.

Because Martin Luther King had a Dream
so no one would have to scream
for there wouldn't be a dilemma
like Birmingham or Selma.

He once said that he had a dream
and that one day it will come true.
But it will only be a dream
until there is change in me and you. 

States of Matter: Facts


Atom
Matter is all around us. Matter is the air you are breathing. Matter is the computer you are reading from now. Matter is the stuff you touch and see. And it is more. Matter is defined as anything that has mass and takes up space. Matter is found in 3 major states; solid, liquid and gas.
So what is matter made of? All matter is made of atoms. Atoms are the smallest particle of matter. They are so small that you cannot see them with your eyes or even with a standard microscope. A standard sheet of paper is about a million atoms thick. Science has come up with a technology to identify atoms called a scanning tunneling microscope (STM) which uses electricity to map atoms. There is more about atoms later, but first let's learn about the three states of matter.

SOLIDS

Matter that is composed of atoms packed tightly together are known as solids. You cannot walk through a solid wall. The matter is packed so tight that it prevents you from moving through it. Solids hold their shape at room temperature. The pencil that you left in the desk at school will still be the same shape when you return tomorrow.
Pencil
Even in solids there is a small space between the atoms. Depending on how tight the atoms are packed determines the density of matter. This means that a one inch block of wood is not as dense as a one inch block of gold. There is more space between the atoms of the wood than the atoms of the gold.

LIQUIDS

Liquids
Liquids do not hold their shape at room temperature. There is space between the atoms of a liquid and they move slightly all of the time. This allows you to stick your finger into water and pull it back out, letting the water fill back in where your finger once was. But when walking through the water in the swimming pool, you have to push the water out of the way ‐ this means that you feel the heaviness of the water. Liquids flow or pour and can take on the shape of a container. If the liquid is poured into a wider or narrower container, the liquid will take on that new shape. Liquids are affected by gravity. If you pour only half a cup of milk, the top half of the container would have no milk. Liquids cannot be handed to another person well without the container. Imagine going into a restaurant and asking for lemonade. What if the waiter just put the lemonade into your hands ‐ no glass or cup? Could you lay the lemonade on the table to drink in a few minutes? Even water in a river or a lake has a container ‐ the banks, the bottom, the shore ‐ they form the container.

GASES

Balloon
Gases not only do not hold their shape at room temperature, they don't even stay put. Gases are always moving. There is so much space between the atoms in gas that you can move around in them easily. When you walk from one side of the room to the other, you have walked through a bunch of gases that make up our air. You barely even know they are there. Gases will take on the shape of their container and can be compressedinto a smaller space. Like when we compress air into a balloon ‐ it fills out the balloon shape. Gases will fill up the space too. You don't see only half of the balloon filled with air ‐ the air is not as influenced by gravity as a liquid or a solid would be.
For a better understanding, take a look at these animations of the behavior of solids, liquids and gases.

CHANGE OF STATE

Matter can move from one state to another, but can still be the same substance. A change of state, also called a phase change, is a physical change from one state of matter to another, for example, from solid to liquid or from liquid to gas.
Boil
How does matter move from one phase to another? If the motion of the atoms is altered by pressure or temperature, the state can change too. By lowering the temperature of water, it can freeze into a solid. By heating water, it can become steam which is a gas. Whether solid, liquid or gas ‐ water is still water.
Pressure can change matter from one state to another. Deep in the earth solids turn to liquids because the heavy weight of layers and layers of the earth push down on the solids causing them to turn to liquid magma. This is just one example of how pressure can change matter too.
Other matter changes too, but often only exists in two states or requires the help of humans and technology to move through all three phases. Water is the only matter on earth that can be found naturally in all three - solid, liquid and a gas.